

Advanced Technical Skills (ATS) North America

CPU MF - the "Lucky" 113s - z196 Update and WSC Experiences

SHARE Session 7717

August 4, 2010

John Burg jpburg@us.ibm.com IBM

Trademarks

The following are trademarks of the International Business Machines Corporation in the United States and/or other countries.

AlphaBlox*	GDPS*	RACF*	Tivoli*
APPN*	HiperSockets	Redbooks*	Tivoli Storage Manager
CICS*	HyperSwap	Resource Link	TotalStorage*
CICS/VSE*	IBM*	RETAIN*	VSE/ESA
Cool Blue	IBM eServer	REXX	VTAM*
DB2*	IBM logo*	RMF	WebSphere*
DFSMS	IMS	S/390*	zEnterprise
DFSMShsm	Language Environment*	Scalable Architecture for Financial Reporting	xSeries*
DFSMSrmm	Lotus*	Sysplex Timer*	z9*
DirMaint	Large System Performance Reference™ (LSPR™) Systems Director Active Energy Manager	z10
DRDA*	Multiprise*	System/370	z10 BC
DS6000	MVS	System p*	z10 EC
DS8000	OMEGAMON*	System Storage	z/Architecture*
ECKD	Parallel Sysplex*	System x*	z/OS*
ESCON*	Performance Toolkit for VM	System z	z/VM*
FICON*	PowerPC*	System z9*	z/VSE
FlashCopy*	PR/SM	System z10	zSeries*
* Registered trademarks of IBM Corporation	Processor Resource/Systems Manager		

The following are trademarks or registered trademarks of other companies.

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, and/or other countries. Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both and is used under license therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency, which is now part of the Office of Government Commerce.

* All other products may be trademarks or registered trademarks of their respective companies.

Notes:

Performance is in Internal Throughput Rate (ITR) ratio based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput that any user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput improvements equivalent to the performance ratios stated here. IBM hardware products are manufactured from new parts, or new and serviceable used parts. Regardless, our warranty terms apply.

All customer examples cited or described in this presentation are presented as illustrations of the manner in which some customers have used IBM products and the results they may have achieved. Actual environmental costs and performance characteristics will vary depending on individual customer configurations and conditions.

This publication was produced in the United States. IBM may not offer the products, services or features discussed in this document in other countries, and the information may be subject to change without notice. Consult your local IBM business contact for information on the product or services available in your area.

All statements regarding IBM's future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Information about non-IBM products is obtained from the manufacturers of those products or their published announcements. IBM has not tested those products and cannot confirm the performance, compatibility, or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

Prices subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your geography.

Other Related Presentations

- zPCR Capacity Sizing Lab Part 1 Introduction & Overview Wed 1:30 PM
- zPCR Capacity Sizing Lab Part 2 Hands on Lab Wed 3 PM
- To MIPS or Not to MIPS Thursday 9:30
- Lunch and Learn: <u>The All New LSPR and z196</u> Thursday 12:15
- Framework For Doing Capacity Sizing on System z Thursday 1:30 PM
- IBM Smart Analytics Optimizer Thursday 3 PM

Topics

CPU MF Introduction

- What it is, how to enable,
- New support for z10s and zEnterprise 196 (z196)
 - Including Sync Interval and Identification of Processor Type (e.g. GCP, zAAP, zIIP)

Workload Characterization Update

• Step 1 completed

Key Performance Metrics for z10s and z196s

- CPI, Problem State, Cache / Memory Hierarchy
- New metrics and formulas

WSC Customer Experiences with SMF 113s

- Lessons Learned Summary
- HiperDispatch=No/Yes
- DB2 10 for z/OS Beta 1MB Page Buffer pools

Summary

CPU Measurement Facility Introduction

What is the z10 CPU Measurement Facility

• New hardware instrumentation facility "CPU Measurement Facility" (CPU MF)

- Available on System z10 GA2 (EC and BC) and z196
- Supported by a new z/OS component (Instrumentation), Hardware Instrumentation Services (HIS)

Potential Uses – for this new "cool" virtualization technology

- COUNTERS
 - Supplement Current Performance Metrics
 - Workload characterization
- SAMPLING
 - ISV product improvement
 - Application Tuning

IBM Research article

- "IBM System z10 performance improvements with software & hardware synergy"
- <u>http://www.research.ibm.com/journal/rd/531/jackson.pdf</u>
- Contact IBM team for copy of the article

Requirements and Steps to utilize z10 and z196 CPU MF

Requirements for CPU MF

- z196 or System z10 machine
 - z10 must be at GA2 Driver 76D Bundle #20 or higher
- z10 z/OS LPAR being measured must be at z/OS 1.8 or higher with APARs:
 - OA25755, OA25750, and OA25773 also OA30486 for z/OS 1.10 and higher for new functionality
 - OA27623 also recommended to add "CPU Speed" to SMF 113s and HIS COUNTERS output
 - Not currently supported for z/OS running as a z/VM guest z/VM native prototype support in process
- z196 z/OS LPARs being measured at z/OS 1.9 or higher require APAR OA30486
 - z/OS 1.8 requires OA33052

Steps to utilize CPU MF Operationally CPU MF works the same on z196 Configure the z10 or z106 to collect CPU ME Date

- Configure the z10 or z196 to collect CPU MF Data
 - Update LPAR Security Tabs (See appendix)
- Configure HIS on z/OS to collect CPU MF Data
 - Set up HIS Proc
 - Set up OMVS Directory
 - Collect SMF 113s via SMFPRMxx
- Collect CPU MF Data
 - Start HIS Modify with Begin/End for COUNTERS or SAMPLING
 - "F HIS,B,TT='Text',PATH='/his/',CTRONLY,CTR=ALL
- Analyze the CPU MF Data
 - SMF 113s

CPU MF has a very low overhead to run, is easy to implement, and is a very small SMF record

//HIS PROC

//HIS EXEC PGM=HISINIT,REGION=0K,TIME=NOLIMIT //SYSPRINT DD SYSOUT=*

Remember CTR=ALL to get Extended Counters!

New HIS support for Sync Interval, PU Type and STATECHANGE

- APAR OA30486 with z/OS 1.12 GA will be rolled down to z/OS V1R11 and z/OS V1R10
 - Applicable for <u>z10s</u> and <u>z196s</u> for new functionality
 - New CPU MF capability to sync SMF 113s with other SMF records
 - SMFINTVAL=SYNC
 - Synchronize records with the SMF global recording interval
 - ...or choose Interval time 1-60
 - Recommendation is "SYNC":

Recommend SMFINTVAL=SYNC or SI=SYNC

- "F HIS,B,TT='Text',PATH='/his/',CTRONLY,CTR=ALL,SMFINTVAL=SYNC "
- Identification of PU Type (GCP, zIIP or zAAP) in SMF 113 record
 - SMF113_2_CpuProcClass '0 '- GCP / '2' zAAP / '4' zIIP
- STATECHANGE
- Both SMFINTERVAL and STATECHANGE <u>can be abbreviated</u>, e,g, SI=SYNC, SC=SAVE
 "F HIS,B,TT='Text',PATH='/his/',CTRONLY,CTR=ALL,SI=SYNC,SC=SAVE "
- In SMF 113s the z196 processor is identified by
 SMF113_2_CTRVN2 = '2' for z196, '1' for z10

z196 Extended Counters have changed, use CTRVN2 to determine if z10 or z196

HIS STATECHANGE

HIS detects and handles significant hardware events (state change)

- Replacement Capacity (Customer Initiated Upgrade)
- On/Off Capacity on demand
- How HIS reacts depends on the STATECHANGE parameter specified
 - STATECHANGE=STOP
 - Stop the collection run when the event was detected
 - STATECHANGE=IGNORE
 - Continue the collection run as if the event never happened
 - STATECHANGE=SAVE (Default)
 - Record the previous state of the system (Save all data)
 - Write and close the .CNT file
 - Close all .SMP files (1 per CPU)
 - Cut SMF Type 113 Records (1 per CPU)
 - Continue the collection run with the new state
 - Create new .SMP files (1 per CPU)
 - Cut SMF Type 113 Records (1 per CPU)

STATECHANGE information not directly reported in the SMF 113

You will see additional record(s) and an increase/decrease in CPIDs or "CPU Speed"

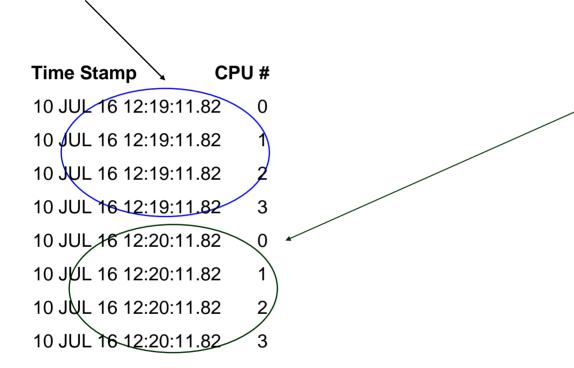
Recommend STATECHANGE=SAVE, (the default) so don't need to specify

Verify with SMF 113s that "CPU Speed" or "Effective GHz" changed as expected

New HIS APAR OA30486 support for z196 – WSC Example

15:33:13.24 JPBURG 00000200 F HIS,B,TT='Z196 w/ TEST',CTRONLY,CTR=ALL,SMFINTVAL=SYNC 15:33:14.22 STC01226 00000000 HIS0111 HIS DATA COLLECTION STARTED

Time Stamp CPU #	Ср	ouProcClass CTNVN1	С	TNVN2 CPSP		
10 JUL 22 15:33:14.22	0	0	1	2	5208	'5.2' GHz
10 JUL 22 15:33:14.22	1	0	1	2	5208	
10 JUL 22 15:33:14.22	4	4	1	2	5208	-400
10 JUL 22 15:33:14.22	5	4	1	2	5208	z196
10 JUL 22 15:35:00.00	0	" 0 " GCP 0	1	2	5208	ţ
10 JU/L 22 15:35:00.00	1	$\longrightarrow 0$	1	2	5208	
10 JŲL 22 15:35:00.00)	4	'4'-zⅡP 4	1	2	5208	
10 JUL 22 15:35:00.00	5	4	1	2	5208	
				Ţ		
				'2' z19	6	


SMF 113 Synched with SMF Global Recording Interval - 5 Minutes

New HIS APAR OA30486 support for z196 – WSC Example

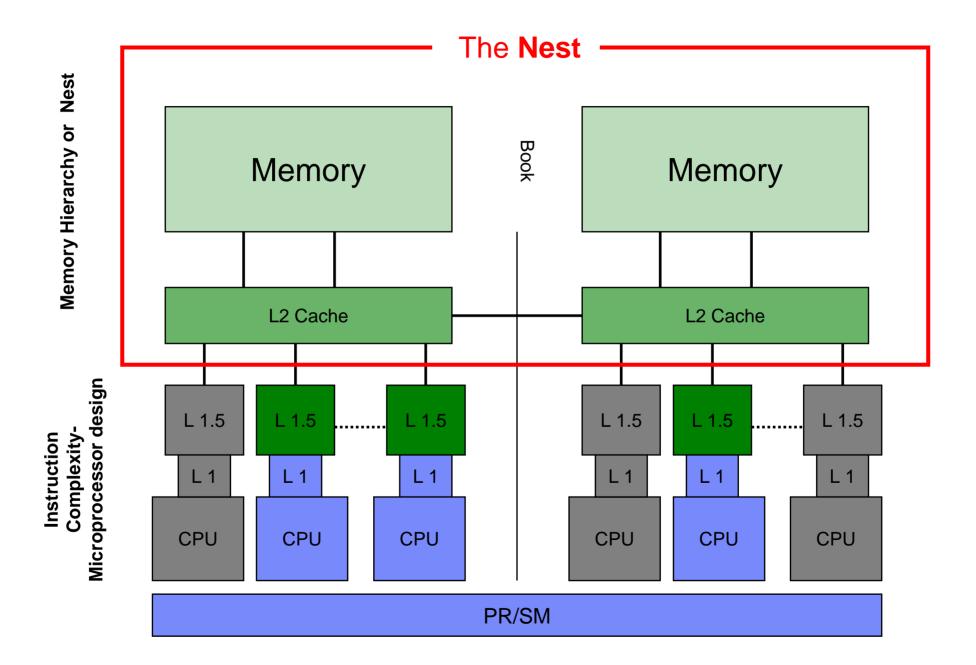
12:19:11.82 JPBURG 00000200 F HIS,B,TT='Z196 TEST', CTRONLY,CTR=ALL,SMFINTVAL=1

12:19:11.82 STC32434 00000000 HIS0111 HIS DATA COLLECTION STARTED

SMF 113 Written every 1 Minute

Workload Characterization Update

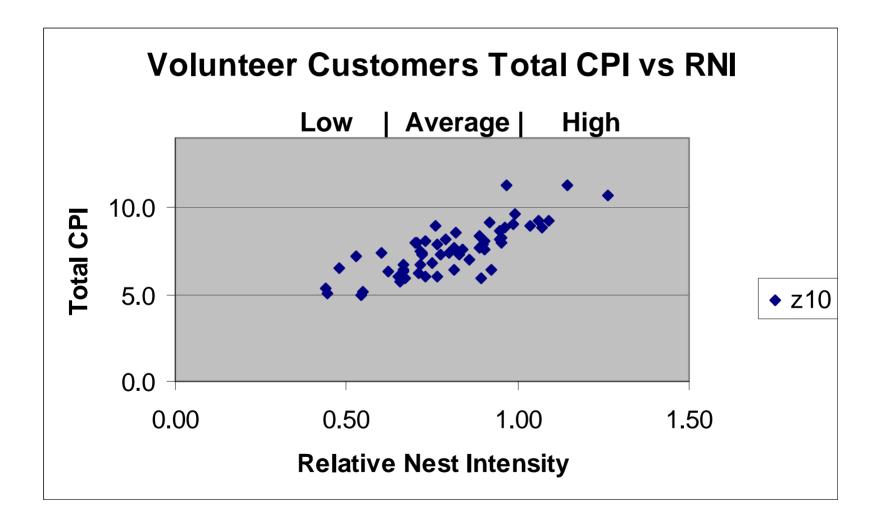
- Historically, <u>LSPR workload capacity curves (primitives and mixes) have had</u> <u>application names or been identified by a "software" captured characteristic</u> – For example, CICS, IMS, OLTP-T, CB-L, LoIO-mix, TI-mix, etc
- However, capacity performance is more closely associated with <u>how a workload is</u> using and interacting with a processor "hardware" design
- With the availability of <u>CPU MF (SMF 113) data on z10</u>, the ability to gain <u>insight into</u> the interaction of workload and hardware has arrived
- The <u>knowledge gained is still evolving</u>, but the <u>first step in the process is to produce</u> <u>LSPR workload capacity curves</u> based on the underlying hardware sensitivities
- Thus, the <u>LSPR for z196 will introduce three new workload categories</u> which replace all prior primitives and mixes
 - Based on new hardware defined metric called **<u>Relative Nest Intensity</u>**
 - Low, Average, High (Relative Nest Intensity)
- To simplify the transition, <u>an easy and automatic translation of old names to new</u> <u>categories will be supplied in zPCR</u>
 - For example, if you have been using LoIO-mix in your studies, you will simply use the new "Average" workload in the future


Instruction Complexity (Micro processor design)

- Many design alternatives
 - Cycle time (GHz), instruction architecture, pipeline, superscalar, Out-Of-Order, branch prediction and more
- Workload effect
 - May be different with each processor design
 - But once established for a workload on a processor, doesn't change very much

Memory Hierarchy or "Nest"

- Many design alternatives
 - Cache (levels, size, private, shared, latency, MESI protocol), controller, data buses
- Workload effect
 - Quite variable
 - Sensitive to many factors: locality of reference, dispatch rate, IO rate, competition with other applications and/or LPARs, and more
 - Net effect of these factors represented in "Relative Nest Intensity"
- Relative Nest Intensity (RNI)
 - Activity beyond private-on-chip cache(s) is the most sensitive area
 - Reflects distribution and latency of sourcing from shared caches and memory
 - Level 1 cache miss percentage also important
 - Data for calculation available from CPU MF (SMF 113) starting with z10



CPU MF

z10 Customer Workload Characterization Summary

Workload Characterization Future Vision – Step 1 is Complete

- Future vision to help identify workload characteristics and to provide better input for capacity planning and performance
 - Step 1 Created Workload Categories from SMF 113s complete
 - Over 150 z10 Customer/Partitions have participated thru 8/1. Thank You!
 - Measured LSPR with these new Categories
 - Step 2 Refine Workload Selection Process
 - As you move to z196 from z10, looking for "Before" and " After volunteers

Still Looking for "Volunteers" – (3 days, 24 hours/day, SMF 70s, 71s, 72s, 113s per LPAR) "Before z10" and "After z196"

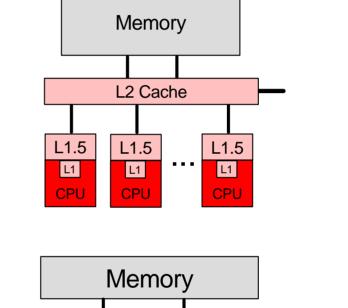
If interested send note to <u>ipburg@us.ibm.com</u>, No deliverable will be returned

Benefit: Opportunity to ensure your data is used to influence analysis

Recommend Capturing CPU MF SMF 113 Records on z10s

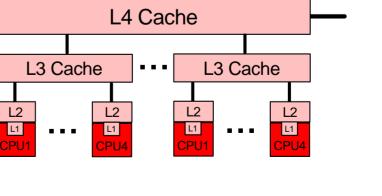
- What is CPU MF?
 - A new z10 and z196 capability to measure cache / memory hierarchy characteristics
- How can it be used today?
 - To supplement current performance metrics (e.g. from SMF, RMF, DB2, CICS)
 - As a secondary data source to understand why performance may have changed
- What can it be used for in z196 capacity planning?

 - Capacity Sizing process is the same as today with zPCR
 Based on DASD I/Os per MSU consumed
 And optionally use a new Relative Nest Intensity "Hint"
 CP3KEXTR will process SMF 113s and include in EDF file for zPCR
 - SMF 113 data may prove useful in support of an installation of z196
- What CPU MF is not
 - It is **Not** a substitute for traditional performance nor capacity metrics
 - It does **Not** indicate the capacity being achieved by the LPAR or processor
- Recommend Enabling CPU MF COUNTERS on key z10 production partitions
 - See CPU MF Overview and WSC Experiences Techdoc TC000041
 - http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TC000041
 - Overview presentation and a white paper on how to enable CPU MF COUNTERS

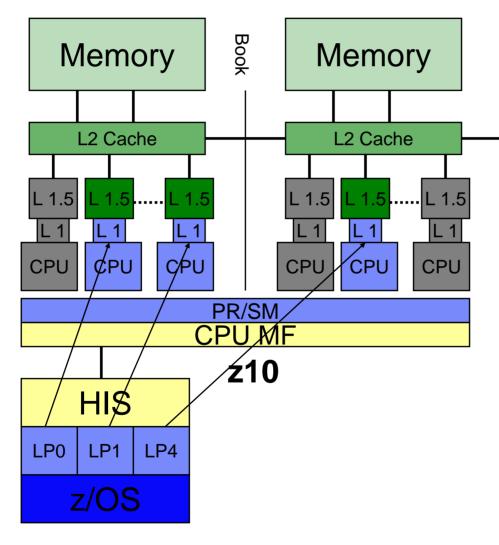

Key Performance Metrics for z10s and z196s

z196 versus z10 hardware comparison

L2


L1

- z10 EC
 - ► CPU
 - -44 GHz
 - Caches
 - -L1 private 64k i, 128k d
 - -L1.5 private 3 MB
 - -L2 shared 48 MB / book
 - -book interconnect: star



- CPU
 - -52 GHz
 - Out-Of-Order execution
- Caches
 - L1 private 64k i, 128k d
 - L2 private 1.5 MB
 - L3 shared 24 MB / chip
 - I 4 shared 192 MB / book
 - -book interconnect: star

CPU MF and HIS provide a z/OS logical view Resource Usage and Cache Hierarchy Sourcing

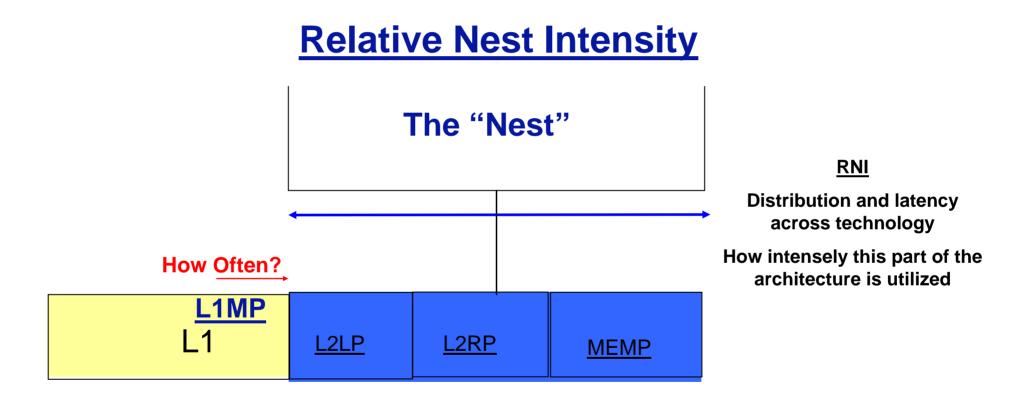
LPAR / Logical CP view:

•Memory Accesses

•Cache

- •L 2 / (L4 z196) Accesses (local and remote)
- •L3 Accesses on z196
- •L1.5 / (L2 z196) Accesses
- •L1 Sourced from Hierarchy
- •Instructions and Cycles
- •Crypto function

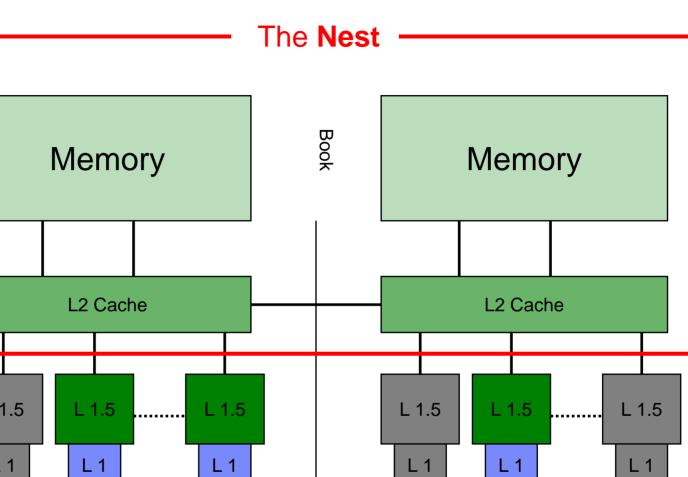
Current CPU MF Key Performance Metrics:


CPI	PRBSTATE	L1MP	L15P	L2LP	L2 RP	MEMP	LPARCPU

- **CPI Cycles per Instruction**
- **PRBSTATE % Problem State**
- L1MP Level 1 Miss %
- L15P % sourced from L1.5 cache
- L2LP % sourced from Level 2 Local cache (on same book)
- L2RP % sourced from Level 2 Remote cache (on different book)
- **MEMP % sourced from Memory**
- LPARCPU APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

Workload Characterization L1 Sourcing from cache/memory hierarchy

Introducing the new Relative Nest Intensity (RNI) metric


- <u>Relative Nest Intensity</u> reflects the distribution and latency of sourcing from shared caches and memory
 - For z10 Technology the Relative Nest Intensity = (L2LP * 1 + L2RP * 2.4 + MEMP * 7.5) / 100

Microprocessor Design

Memory Hierarchy or Nest

Nest Memory Hierarchy or CPI Microprocessor design L 1.5 **Complexity-**Instruction L 1 CPU CPU CPU CPU CPU CPU PR/SM

Updated z10 CPU MF Workload Characterization Summary

CustomerSYSID MONDAYCPIPRBSTATEEst InstrCmplxCPISCPL 1ML1MPL15PL2LPL2RPMEMPRel NestLPARCPUEffAll VolunteersMinimum3.11.12.10.959.61.348.65.60.02.20.414.4All VolunteersAverage7.231.23.23.9101.43.968.921.21.68.30.9376.3All VolunteersMaximum12.067.15.68.6194.96.982.832.96.920.21.81442.34.40New z10 columns arePrb State - % Problem State1.Est Instr Cmplx CPI2.Est Finite CPI3.Est SCPL1M4.Rel Nest Intensity4.Rel Nest Intensity5.Eff GHz5.Eff GHz				1		Ļ	Ļ											
All VolunteersMinimum3.11.12.10.959.61.348.65.60.02.20.414.4All VolunteersAverage7.231.23.23.9101.43.968.921.21.68.30.9376.3All VolunteersMaximum12.067.15.68.6194.96.982.832.96.920.21.81442.34.40New z10 columns areCPI – Cycles per InstructionPrb State - % Problem State1.Est Instr Cmplx CPIEst Instr Cmplx CPIEst Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)2.Est Finite CPIEst Finite CPI – Estimated CPI from Finite cache/memory3.Est SCPL1MEst SCPL1M – Estimated Sourcing Cycles per Level 1 Miss4.Rel Nest IntensityL1MP – Level 1 Miss %5.Eff GHzL15P – % sourced from Level 2 cache	Custome	er	SYSID MON	DAY CF					L1MP	L15P	L	_2LP	L2RP	MEMP		LPARC		
All VolunteersMaximum12.067.15.68.6194.96.982.832.96.920.21.81442.34.40New z10 columns areCPI - Cycles per Instruction1.Est Instr Cmplx CPI2.Est Finite CPIEst Instr Cmplx CPI - Estimated Instruction Complexity CPI (infinite L1)2.Est SCPL1M3.Est SCPL1MEst SCPL1M - Estimated CPI from Finite cache/memory4.Rel Nest IntensityEst SCPL1M - Estimated Sourcing Cycles per Level 1 Miss5.Eff GHzL15P - % sourced from Level 2 cache			Minim	um 3	3.1 1.1	2.1			\			5.6	0.0	2.2	0.4	-		
New z10 columns areCPI – Cycles per Instruction1.Est Instr Cmplx CPI2.Est Finite CPI3.Est SCPL1M4.Rel Nest Intensity5.Eff GHz				0 -	(1						\ \			
New z10 columns arePrb State - % Problem State1.Est Instr Cmplx CPIEst Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)2.Est Finite CPIEst Finite CPI – Estimated CPI from Finite cache/memory3.Est SCPL1MEst SCPL1M – Estimated Sourcing Cycles per Level 1 Miss4.Rel Nest IntensityL1MP – Level 1 Miss %5.Eff GHzL15P – % sourced from Level 2 cache		teers	Waxim	ium 12	2.0 67.1	5.0	8.6	194.9	6.9	82.8		32.9	6.9	20.2	1.8	14	42.3	4.40
New z10 columns arePrb State - % Problem State1.Est Instr Cmplx CPIEst Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)2.Est Finite CPIEst Finite CPI – Estimated CPI from Finite cache/memory3.Est SCPL1MEst SCPL1M – Estimated Sourcing Cycles per Level 1 Miss4.Rel Nest IntensityL1MP – Level 1 Miss %5.Eff GHzL15P – % sourced from Level 2 cache																		
Prb State - % Problem State1.Est Instr Cmplx CPI2.Est Finite CPI3.Est SCPL1M4.Rel Nest Intensity5.Eff GHz	No					CPI	 Cycle 	s per In	struct	ion								
2.Est Finite CPIEst Finite CPI – Estimated Instruction Complexity CPI (Infinite L1)2.Est Finite CPIEst Finite CPI – Estimated CPI from Finite cache/memory3.Est SCPL1MEst SCPL1M – Estimated Sourcing Cycles per Level 1 Miss4.Rel Nest IntensityL1MP – Level 1 Miss %5.Eff GHzL15P – % sourced from Level 2 cache						Prb	State - ^c	% Probl	em St	tate								
 3. Est SCPL1M 4. Rel Nest Intensity 5. Eff GHz Est Ninte Cl 1 – Estimated Of Filohin Finite Cache/memory Est SCPL1M – Estimated Sourcing Cycles per Level 1 Miss L1MP – Level 1 Miss % L15P – % sourced from Level 2 cache 	1.	E	st Instr C	mplx C	PI	Est	Est Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)											1)
 4. Rel Nest Intensity 5. Eff GHz L1MP – Level 1 Miss % L15P – % sourced from Level 2 cache 	2.	E	st Finite 0	CPI		Est	Est Finite CPI – Estimated CPI from Finite cache/memory											
5. Eff GHzL15P – % sourced from Level 2 cache	3.	E	st SCPL1	Μ		Est	SCPL1N	∕I – Esti	mated	d Sou	ircing	Cycl	les pe	er Lev	el 1 Mis	S		
5. Eff GHz L15P – % sourced from Level 2 cache	4	R	el Nest In	tensity	/	L1M	P – Lev	el 1 Mis	ss %									
5. ETT GHZ				tonony	/	1 1 5		ourood	from I	ovol	2 000	ho						
	5.	E	ff GHz			LISI	$L_{10} = 70$ Sourceu IIOIII Level 2 Cacile											
L2LP – % sourced from Level 2 Local cache (on same book)						L2LI	L2LP – % sourced from Level 2 Local cache (on same book)											
L2RP – % sourced from Level 2 Remote cache (on different book)						L2R	L2RP – % sourced from Level 2 Remote cache (on different book)											
MEMP - % sourced from Memory						MEN	MEMP - % sourced from Memory											
Rel Nest Intensity – Reflects distribution and latency of sourcing from						Rel	Nest Int	ensitv –	Refle	ects d	listribu	ution	and	latenc	v of sou	urcina	from	
Workload Characterization shared caches and memory						shar		•			_				,	9	-	
L1 Sourcing from cache/memory hierarchy LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured			L1 Sourcing	trom cach	e/memory hier arc	LPA	RCPU -	APPL	% (GC	Ps, z	zAAPs	s, zIII	Ps) c	apture	ed and u	Incapt	ured	
Eff GHz – Effective gigahertz for GCPs, cycles per nanosecond						Eff (GHz – E	ffective	gigah	ertz f	for GC	CPs,	cycle	es per	nanose	cond		

WSC z196 Sample CPU MF from July – 5 Minute Synched Intervals

z196																	
						Est Instr Cmplx	Est Finite	Est							Rel Nest		
SYSID	Mon	Day SH	Hour	CPI	Prb State	CPI	CPI	SCPL1M	L1MP	L2F	L3P	L4LP	L4RP	MEMP	Intensity	LPARCPU	Eff GHz
SYSD	JUL	22 N	17.25	3.65	2.3	2.70	0.95	26	3.7	77.8	Z0.5	0.9	0.2	0.7	0.24	0.8	5.2
SYSD	JUL	22 N	17.33	3.68	2.3	2.73	0.95	26	3.6	77.4	20.8	0.9	0.2	0.7	0.24	0.8	5.2
SYSD	JUL	22 N	17.42	3.67	2.3	2.72	0.95	26	3.7	78.0	20.3	0.9	0.2	0.7	0.24	0.8	5.2
SYSD	JUL	22 N	17.50	3.64	2.3	2.71	0.93	26	3.6	77.8	20.5	0.9	0.2	0.7	0.24	0.8	5.2
SYSD	JUL	22 N	17.58	3.66	2.3	2.72	0.94	26	3.6	77.9	20.4	0.8	0.2	0.7	0.24	0.8	5.2
SYSD	JUL	22 N	17.67	3.65	2.3	2.72	0.94	26	3.6	77.0	21.1	0.9	0.2	0.7	0.24	0.8	5.2
SYSD	JUL	22 N	17.75	3.66	2.3	2.72	0.94	26	3.6	77.4	20.8	0.9	0.2	0.7	0.24	0.8	5.2
SYSD	JUL	22 N	17.83	3.64	2.3	2.70	0.94	26	3.6	77.1	21.0	0.9	0.2	0.7	0.24	0.8	5.2
SYSD	JUL	22 N	17.92	2.78	49.2	2.06	0.72	34	2.1	76.7	18.3	1.8	1.4	1.9	0.42	1.5	5.2
SYSD	JUL	22 N	18.00	3.65	3.2	2.71	0.94	26	3.6	77.0	21.1	1.0	0.2	0.7	0.25	0.8	5.2
SYSD	JUL	22 N	18.08	5.00	0.8	3.46	1.53	27	5.7	86.1	11.9	0.3	0.1	1.7	0.28	9.7	5.2
SYSD	JUL	22 N	18.17	3.72	3.2	2.76	0.96	27	3.6	76.8	21.0	1.1	0.2	0.8	0.26	0.9	5.2
SYSD	JUL	22 N	18.25	3.82	3.7	2.76	1.06	28	3.7	77.4	19.8	1.2	0.6	1.1	0.30	0.9	5.2

CPI – Cycles per Instruction

Prb State - % Problem State

Est Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)

Est Finite CPI – Estimated CPI from Finite cache/memory

Est SCPL1M – Estimated Sourcing Cycles per Level 1 Miss

L1MP – Level 1 Miss %

L2P – % sourced from Level 2 cache

L3P – % sourced from Level 3 on same Chip cache

L4LP – % sourced from Level 4 Local cache (on same book)

L4RP - % sourced from Level 4 Remote cache (on different book)

MEMP - % sourced from Memory

CPU MF provides measurement of the z196 Level 3 shared cache

These numbers come from a synthetic Benchmark and do not represent a production workload

Rel Nest Intensity – Reflects distribution and latency of sourcing from shared caches and memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

Eff GHz – Effective gigahertz for GCPs, cycles per nanosecond

Workload Characterization L1 Sourcing from cache/memory hierarchy

Formulas – z10

Workload Characterization L1 Sourcing from cache/memory hierarchy

Metric	Calculation – note all fields are deltas between intervals
CPI	B0 / B1
PRBSTATE	(P33 / B1) * 100
L1MP	((B2+B4) / B1) * 100
L15P	((E128+E129) / (B2+B4)) * 100
L2LP	((E130+E131) / (B2+B4)) * 100
L2RP	((E132+E133) / (B2+B4)) * 100
MEMP	(((E134+E135) + (B2+B4-E128-E129-E130-E131-E132- E133-E134-E135)) / (B2+B4)) * 100
LPARCPU	(((1/CPSP/1,000,000) * B0) / Interval in Seconds) * 100

CPI – Cycles per Instruction

PRBSTATE - % Problem State

L1MP – Level 1 Miss %

L15P - % sourced from L1.5 cache

- L2LP % sourced from Level 2 Local cache (on same book)
- L2RP % sourced from Level 2 Remote cache (on different book)

MEMP - % sourced from Memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

- B* Basic Counter Set Counter Number
- P* Problem-State Counter Set Counter Number

See "The Set-Program-Parameter and CPU-Measurement Facilities" SA23-2260-0 for full description

E* - Extended Counters - Counter Number

See "IBM The CPU-Measurement Facility Extended Counters Definition for z10" SA23-2261-0 for full description

Formulas – z10 Additional

Metric	Calculation – note all fields are deltas between intervals
Est Instr Cmplx CPI	CPI – Estimated Finite CPI
Est Finite CPI	((B3+B5) / B1) * .84
Est SCPL1M	((B3+B5) / (B2+B4)) * .84
Rel Nest Intensity	(1.0*L2LP + 2.4*L2RP + 7.5*MEMP) / 100
Eff GHz	CPSP / 1000

Note these Formulas may change in the future

Est Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)

Est Finite CPI – Estimated CPI from Finite cache/memory

Est SCPL1M – Estimated Sourcing Cycles per Level 1 Miss

Rel Nest Intensity – Reflects distribution and latency of sourcing from shared caches and memory

Eff GHz - Effective gigahertz for GCPs, cycles per nanosecond

Workload Characterization L1 Sourcing from cache/memory hierarchy

- B* Basic Counter Set Counter Number
- P* Problem-State Counter Set Counter Number

See "The Set-Program-Parameter and CPU-Measurement Facilities" SA23-2260-0 for full description

Formulas – z196

Workload Characterization L1 Sourcing from cache/memory hierarchy

Metric	Calculation – note all fields are deltas between intervals
CPI	B0 / B1
PRBSTATE	(P33 / B1) * 100
L1MP	((B2+B4) / B1) * 100
L2P	((E128+E129) / (B2+B4)) * 100
L3P	((E150+E153) / (B2+B4)) * 100
L4LP	((E135+E136+E152+E155) / (B2+B4)) * 100
L4RP	((E138+E139+E134+E143) / (B2+B4)) * 100
MEMP	(((E141+E142) + (B2+B4-E128-E129-E150-E153-E135-E136-E152- E155-E138-E139-E134-E143-E141-E142)) / (B2+B4)) * 100
LPARCPU	(((1/CPSP/1,000,000) * B0) / Interval in Seconds) * 100

CPI – Cycles per Instruction

Prb State - % Problem State

L1MP – Level 1 Miss %

L2P – % sourced from Level 2 cache

L3P – % sourced from Level 3 on same Chip cache

L4LP – % sourced from Level 4 Local cache (on same book)

L4RP – % sourced from Level 4 Remote cache (on different book)

MEMP - % sourced from Memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

- B* Basic Counter Set Counter Number
- P* Problem-State Counter Set Counter Number

See "The Set-Program-Parameter and CPU-Measurement Facilities" SA23-2260-0 for full description

E* - Extended Counters - Counter Number

See expected "The CPU-Measurement Facility Extended Counters Definition for z10 and z196" SA23-2261-01 for full description

Formulas – z196 Additional

Metric	Calculation – note all fields are deltas between intervals
Est Instr Cmplx CPI	CPI – Estimated Finite CPI
Est Finite CPI	((B3+B5) / B1) * .63
Est SCPL1M	((B3+B5) / (B2+B4)) * .63
Rel Nest Intensity	1.6*(0.4*L3P + 1.0*L4LP + 2.4*L4RP + 7.5*MEMP) / 100
Eff GHz	CPSP / 1000

Note these Formulas may change in the future

Est Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)

Est Finite CPI - Estimated CPI from Finite cache/memory

Est SCPL1M - Estimated Sourcing Cycles per Level 1 Miss

Rel Nest Intensity –Reflects distribution and latency of sourcing from shared caches and memory

Eff GHz – Effective gigahertz for GCPs, cycles per nanosecond Workload Characterization L1 Sourcing from cache/memory hierarchy

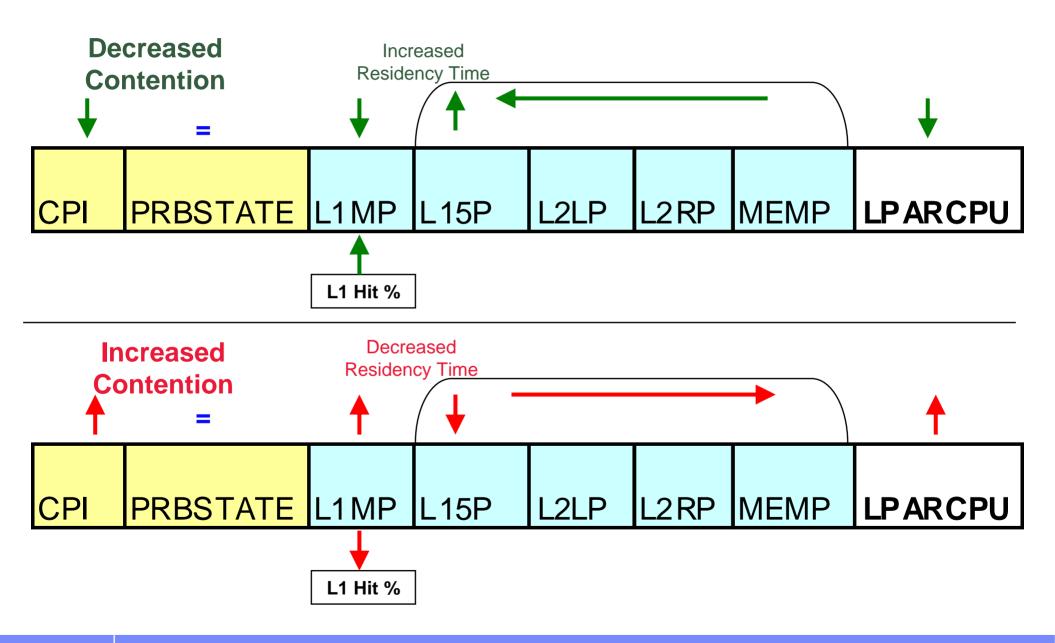
- B* Basic Counter Set Counter Number
- P* Problem-State Counter Set Counter Number

See "The Set-Program-Parameter and CPU-Measurement Facilities" SA23-2260-0 for full description

WSC Experiences Lessons Learned since March 2010

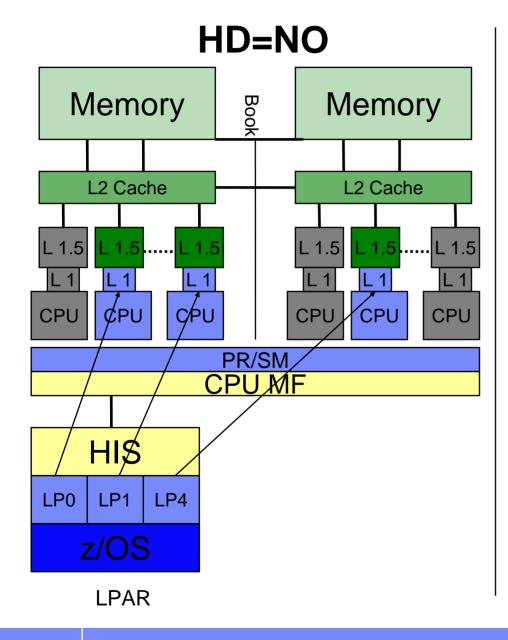
Customer HiperDispatch Measurement

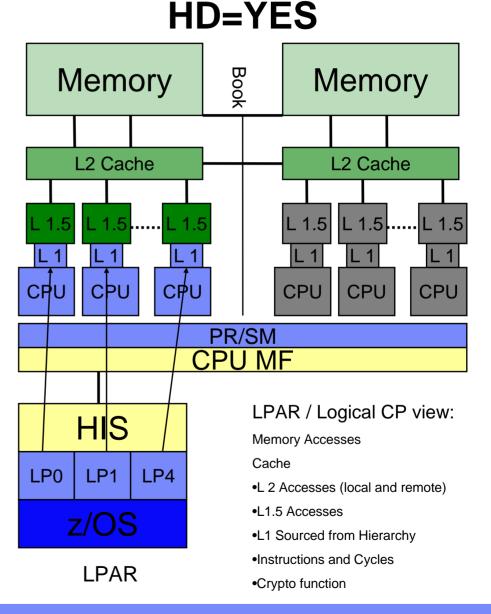
Customer 1 MB Page Measurement

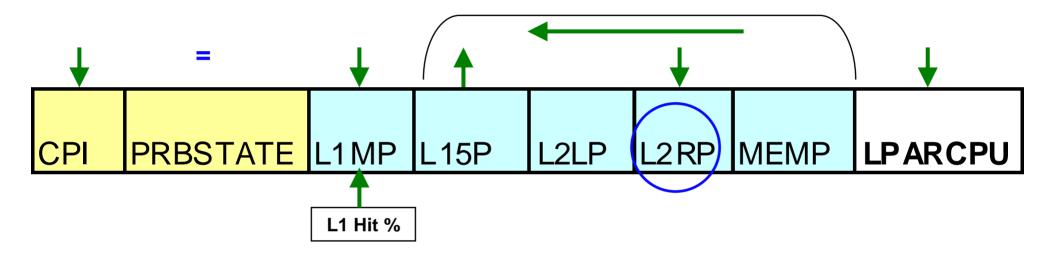

CPU MF – Lessons Learned since March 2010

CPU MF Performance Metrics continues to help understand <u>why</u> performance changed

- LPAR Configuration Changes including
 - HD= Yes/No
- 1 MB Vs 4k Pages
- GHz measurement for State Changes
- Customers continue to successfully run CPU MF COUNTERS collecting SMF 113s
 - Over days/months without any reported performance impact, Turning on and leaving on
 - Volunteer Feedback: easy to enable, minimal time investment
- SMF 113 Logical CPU IDs are equal to the SMF 70 Logical CPU IDs
 - Directly identifies GCPs, zIIPs or zAAPs in SMF 113s with **APAR OA30486** for z10s and z196
- LPAR Management Time is NOT included in LPARCPU time (SMF 113 Cycles)
- Utilize the Counter Version Number fields to map to technology
 - SMF113_2_CTRVN2 Crypto or Extended counter sets = "2" for z196 "1" for z10
- z/VM CPU MF native prototype in process




CPU MF can help provide <u>cache/memory resource</u> change insights


HiperDispatch attempts to align Logical CPs with PUs in the same Book

From CPU MF, HiperDispatch=YES May Decrease the L2 Remote %

CPI - Cycles per Instruction

PRBSTATE - % Problem State

L1MP – Level 1 Miss %

L15P - % sourced from L1.5 cache

L2LP - % sourced from Level 2 Local cache (on same book)

L2RP - % sourced from Level 2 Remote cache (on different book)

MEMP - % sourced from Memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

Potential Workload Characterization z10 L1 sourcing from cache/memory hierarcy

HiperDispatch=Yes Customer Improvement on z10 721

		Day	Hour	С	PI			Est Instr Cmplx CPI	Est Finite CPI	Est SCPL1M	L1MP	L15P	L2LP	L2RP	MEMP	Rel Nest Intensity	LPARCPU	HD ?
		12 11	11.0 11.0			3.2 7.5	53.7 52.8		4.45 3.71	115 97	3.9 3.8	63.7 70.3	23.1 19.8	6.7 3.7				
HD=Y	es %	Impro	vement	t	1.	10	1.02	1.01	1.20	1.19	1.01	0.91	1.17	1.80	1.05	1.17	1.07	

CPI – Cycles per Instruction

Prb State - % Problem State

Est Instr Cmplx CPI – Estimated Instruction Complexity CPI (infinite L1)

Est Finite CPI – Estimated CPI from Finite cache/memory

Est SCPL1M – Estimated Sourcing Cycles per Level 1 Miss

L1MP – Level 1 Miss %

L15P – % sourced from Level 2 cache

L2LP – % sourced from Level 2 Local cache (on same book)

L2RP – % sourced from Level 2 Remote cache (on different book)

MEMP - % sourced from Memory

Rel Nest Intensity – Reflects distribution and latency of sourcing from shared caches and memory

LPARCPU - APPL% (GCPs, zAAPs, zIIPs) captured and uncaptured

HiperDispatch=YES resulted in a ~10% improvement as measured by CPU MF.

Additional measurements over multiple days from traditional CPU/Transaction metrics should be used to validate HD=No Vs. Yes results

- Partition has 21 logical processors
 - 2 additional partitions on the CEC

*** New - This is an evolving use of CPU MF ***

CPU MF can help measure the impact of 1 MB Pages in your environment

			Est Instr	Est Finite	Est						Rel Nest			TLB1 I CPU%	of	Cycl	es	PTE% TLB1	of all
Test	CPI	PRBSTATE	Cmplx	CPI	SCPL1M	L1MP	L15P	L2LP	L2RP	MEMP	Intensity	LPARCPU	GHz	Total 0	CPU	per M	liss	Misse	s
DB2 V10 4K PageFix=YES	4.46	1.29	2.63	1.83	26	7.13	94.72	4.64	0.01	0.63	0.09	28.2	4.4		16.0		83	\setminus	19.2
DB2 V10 1MB PageFix=YES	4.26	1.13	2.58	1.68	23	7.25	96.56	3.03	0.01	0.41	0.06	33.9	4.4		15.6) (65	11	13.7
-	1.05					0.98	0.98	1.53							1.03	/ /	1.28	\mathcal{I}	1.40

- DB2 10 for z/OS Beta provides ability to specify 1 MB Pages for DB2 Buffer Pools
- 1 MB Pages can help reduce TLB Page Table Entry Misses
- CPU MF can be used to help measure the 1 MB Page impact for your environment
 - DB2 10 for z/OS Beta Customer ran DB2 Batch job that exercised 4k and 1MB pages (PageFix=Yes). LFArea=40M
 - The batch job executed 30M Selects, 20M Inserts, and 10M Fetchs
 - CPU MF showed the following but this is not necessarily representative of 1 MB Page results
 - 40% reduction in Page Table Entry % (PTE) of all TLB1 Misses
 - 28% reduction TLB1 Cycles per Miss, 3% reduction TLB1 Miss CPU% of Total CPU
 - Lower CPI and Nest Intensity
 - DB2 Accounting report showed 1.4 % reduction in CPU time

Warning: These numbers come from a synthetic Benchmark and do not represent a production workload

- As you implement 1 MB Page exploiters, use CPU MF to help measure the impact
 - Measure it in its intended Production LPAR
- See white paper "IBM System z10 Support for large pages"
 - http://www.research.ibm.com/journal/abstracts/rd/531/tzortzatos.html

DB2 10 for z/OS Beta Customer – RMF for 1 MB Page

					PAGI	NG AC	ΤΙΥΙΥΥ				PAGE	2
Z/OS V: T = IEAOPTXX M	MODE = ESA	ME	CE	NTRAL	STORAGE MOV	EMENT RAT	TES - IN PAGE	12.45.00 INTERVA 13.00.01 CYCLE 5 5 PER SECOND		s	FAGE	
HIGH UIC (AVG) :	= 65535 WRITTE CENTRAL	(MAX) = EN TO STOR C	65535 READ ENTRAL	(MIN) FROM STOR	= 65535	CENTRAL		E COUNTS*				
PAGES VIO RT PAGES		0.00		0.00		0	0	0				
						AND SLOT	COUNTS					
	CENT	RAL STORA	GE					LOCAL PA	GE DATA SET	SLOT COUNT	s	
(15 SAMPLES)	MIN	MAX		AVG					MIN	MAX	AVG	
AVAILABLE SQA	158,574 10,497 5,734	10,595	10.	529				AVAILABLE SLOTS VIO SLOTS	2,854,758 0	2,854,758 0	2,854,758 0	
ČSA LSQA	39.739	39,921 15,198	39,	850				NON-VIO SLOTS				
REGIONS+SWA TOTAL FRAMES	539,686 786,432 FI	542,913 786,432 IXED FRAME	541, 786,	822 432				BAD SLOTS TOTAL SLOTS SHARE	D FRAMES AN	D SLOTS		
NUCLEUS	2,608 9,636	2,608	2,	608				CENTRAL STORAGE	6,428	6,557	6,489	
LPA CSA LSQA REGIONS+SWA	94 1,550 14,324 49,347	94 1,550 14,334 49,392	1, 14, 49,	94 550 331 359				FIXED TOTAL FIXED BELOW 16 M AUXILIARY SLOTS TOTAL	98 0 8,389	98 0 0 8,518	98 0 8,450	
BELOW 16 MEG BETWEEN 16M-2G TOTAL FRAMES	13,456	13,498	13,	467				MEMOR	Y OBJECTS A	ND FRAMES		
INTRE PROPER		REQUEST						OBJECTS COMMON SHARED LARGE	3 6 40	3 6 40	3 6 40	
GETMAIN REQ FRAMES BACKED	0							FRAMES COMMON COMMON FIXED		3,811	3,801	
FIX REQ < 2 GB FRAMES < 2 GB REF FAULTS 1ST	00						<	1 MB	7,504 40	40	1	

Formulas – Additional TLB

Metric – z10	Calculation – note all fields are deltas between intervals
TLB1 CPU Miss % of Total CPU	((E145+E146) / B0) * 100
TLB1 Cycles per TLB Miss	(E145+E146) / (E138+E139)
PTE % of all TLB1 Misses	(E140 / (E138+E139)) * 100
Metric – z196	Calculation – note all fields are deltas between intervals
Metric – z196 TLB1 CPU Miss % of Total CPU	
	between intervals

Note these Formulas may change in the future

TLB1 CPU Miss % of Total CPU - TLB CPU % of Total CPU

TLB1 Cycles per TLB Miss – Cycles per TLB Miss

PTE % of all TLB1 Misses – Page Table Entry % misses

B* - Basic Counter Set - Counter Number

See "The Set-Program-Parameter and CPU-Measurement Facilities" SA23-2260-0 for full description

E* - Extended Counters - Counter Number

See "IBM The CPU-Measurement Facility Extended Counters Definition for z10" SA23-2261-0 for full description or "The CPU-Measurement Facility Extended Counters Definition for z10 and z196" SA23-2261-01 for full description

z10 and z196 CPU MF COUNTERS Summary

- Traditional metrics continue to provide the best view of Performance
 - CPU MF can help explain <u>why</u> a change occurred
- First Step completed in Workload Characterization for Capacity Sizing
 - Relative Nest Intensity calculation today gives a hint to zPCR
- Volunteers are still needed for our Workload Characterization study for refinement
 - Feedback from Volunteers is this is very easy to enable, with a minimal time investment
- CPU MF has a very low overhead to run and is easy to implement
 - Less than 1/100 of a second for HIS address space in 15 minute interval
 - Customers are successfully running CPU MF in Production Today
- Recommend enabling CPU MF COUNTERS on z10s and z196s today!
 - To supplement current performance metrics (e.g. from SMF, RMF, DB2, CICS), turn on and leave on
 - APAR OA30486 required for z196s and recommended for z10s
- CPU MF Overview and WSC Experiences Techdoc TC000041
 - http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TC000041
 - CPU MF presentation and a <u>detailed write up for enabling CPU MF</u>

Acknowledgements

Many people contributed to this presentation including:

Riaz Ahmad

Greg Boyd

Jane Bartik

Harv Emery

Gary King

Frank Kyne

Steve Olenik

Bob Rogers

Bill Schray

Brian Smith

Bob St John

Elpida Tzortzatos

Kathy Walsh

Disclaimer

Information regarding potential future products is intended to outline our general product direction and it should not be relied on in making a purchasing decision. The information mentioned regarding potential future products is not a commitment, promise, or legal obligation to deliver any material, code or functionality. Information about potential future products may not be incorporated into any contract. The development, release, and timing of any future features or functionality described for our products remains at our sole discretion.

Thank You for attending!

Appendix

CPU MF – Lessons Learned since August 2009

- CPU MF Performance Metrics can be used to help understand <u>why</u> performance changed
- Customers are successfully running CPU MF COUNTERS collecting SMF 113s
 - Over days and months without any reported performance impact
 - Feedback from Volunteers is this is very easy to enable, with a minimal time investment
- SMF 113 Logical CPU IDs are equal to the SMF 70 Logical CPU IDs
 - Can match up SMF 113s & SMF 70s to identify GCPs, zIIPs or zAAPs
 - Can see the unique Vertical Polarity Logical CPs cache/memory characteristics
 - E.G. Vertical Mediums may have higher L2 Remote activity
- In multi-book z10 ECs there can be L2 Remote Activity even if <=12 GCPs</p>
 - Because of I/O activity from SAPs as the data is initially stored in the Remote L2

Utilize the Counter Version Number fields to map to technology

- Number is increased for a change in meaning or number of counters
 - SMF113_2_CTRVN1 Basic or Problem-State counter sets
 - SMF113_2_CTRVN2 Crypto or Extended counter sets

CPU MF Update – Lessons Learned since March 2009

- L1 Miss % can be determined from CPU MF COUNTERS
- z10 EC must be at bundle #20 or higher for CPU MF COUNTERS
- IRD considerations
 - If CPU goes offline, only activity within internal is recorded in an Intermediate record, then
 - If no activity in follow on 15 minute interval(s), Intermediate record is not cut for the CPUID
 - No Final record when HIS is ended
 - When activity resumes, Intermediate record is written for CPUID
- New APAR OA27623 to add "CPU Speed" to SMF 113 and to HIS COUNTERS output
 - Processor speed for which the hardware event counters are recorded. Speed is in cycles / microsecond - "4404" for z10 EC
 - SMF 113 new field: SMF113_2_CPSP 4 byte binary
 - Simplifies conversion of Cycles into "Time"
- Customers are successfully running CPU MF COUNTERS (and collecting SMF 113s) over 24 hours
- Analyze the "major" LPARs on a z10 at the same time

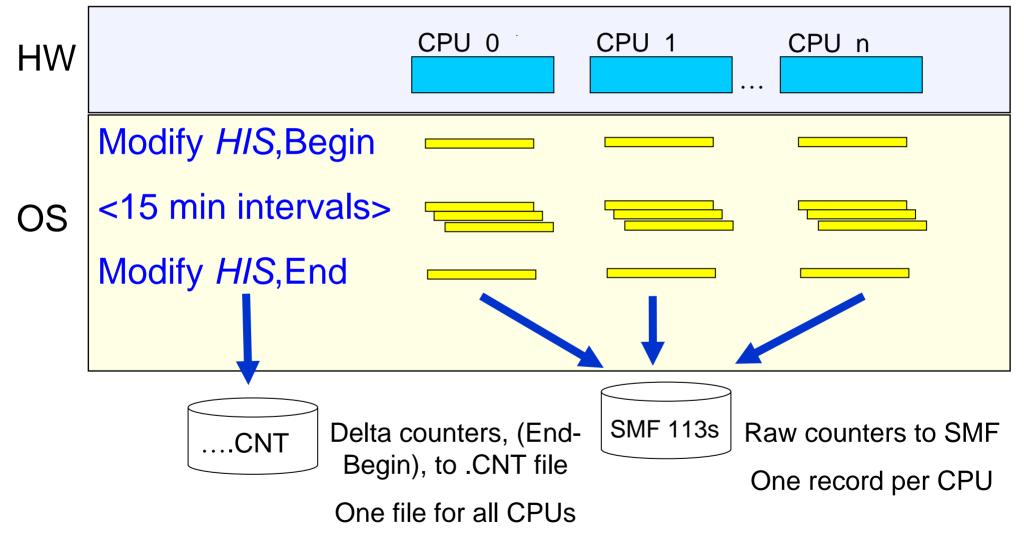
Documentation

- *MVS Commands* SA22-7627-19
 - Setting up hardware event data collection 1-39
- The Set-Program-Parameter and CPU-Measurement Facilities SA23-2260-0
 - Full description of Basic, Problem-State and Crypto Counter Sets
- IBM The CPU-Measurement Facility Extended Counters Definition for z10 SA23-2261-0
- IBM The CPU-Measurement Facility Extended Counters Definition for z10 and z196 SA23-2261-01
- WSC Short Stories and Tall Tales
 - SHARE Summer 2009 Denver Session 2136 John Burg
- CPU MF Overview and WSC Experiences Techdoc TC000041 available March 26 2010
 - http://www.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/TC000041
 - SHARE Winter 2010 presentation and detailed write up for enabling CPU MF John Burg
- ITSO Red Book reference Planned for 4QT 2010
 - *Exploiting System z LPAR Capacity Controls* SG24-7846. 2 Part Book:
 - Part 1 CPU MF
 - Part 2 HiperDispatch, Group Capacity Controls, hard/soft capping
 - Draft available ~April 1

http://www.redbooks.ibm.com/redbooks.nsf/home?ReadForm&page=drafts

HISU19I EVENT COUNTERS INFORMATION VERSION 1

APAR OA27623 "CPU Speed" – HIS COUNTERS Output


FILE NAME: SYSHIS20090615.112833.CNT COMMAND: MODIFY HIS, B, TT='UA46797', CTRONLY, CTR=ALL COUNTER VERSION NUMBER 1: 1 COUNTER VERSION NUMBER 2: 1 COUNTER SET= BASIC COUNTER IDENTIFIERS: 0: CYCLE COUNT 1: INSTRUCTION COUNT 2: L1 I-CACHE DIRECTORY-WRITE COUNT 3: L1 I-CACHE PENALTY CYCLE COUNT 4: L1 D-CACHE DIRECTORY-WRITE COUNT 5: L1 D-CACHE PENALTY CYCLE COUNT START TIME: 2009/06/15 11:28:33 START TOD: C4574FEC19DF7217 END TIME: 2009/06/15 12:19:09 END TOD: C4575B3B6919C911 COUNTER VALUES (HEXADECIMAL) FOR (PU 00 (CPU SPEED = 4404 CYCLES/MIC) 0- 3 00000017978F0641 00000004435EC932 00000000C3DB63E 000000014038D222 4- 7 0000000223375DD 00000004F5D256E8 ----START TIME: 2009/06/15 11:28:33 START TOD: C45/4FEC19E10D9 END TIME: 2009/06/15 12:19:09 END TOD: C4575B3B691AE091 COUNTER VALUES (HEXADECIMAL) FOR CPU 05 (CPU SPEED = 4404 CYCLES/MIC) 0- 3 00000016D275AAA9 00000004395C24A6 00000000C2E714E 000000019E57EBE0 4- 7 0000000219A39DC 0000004E4C3881F -----START TIME: 2009/06/15 11:28:33 START TOD: C4574FEC19E29817 END TIME: 2009/06/15 12:19:09 END TOD: C4575B3B691B8C11 COUNTER VALUES (HEXADECIMAL) FOR CPU 0A (CPU SPEED = 4404 CYCLES/MIC) 0- 3 000000002803BE2 000000000889237 0000000000093D 00000000005B310 4- 7 000000000021461 000000001D9D453 -----START TIME: 2009/06/15 11:28:33 START TOD: C45/4FEC19E43D97 END TIME: 2009/06/15 12:19:09 END TOD: C4575B3B691C7411 COUNTER VALUES (HEXADECIMAL) FOR CPU OB (CPU SPEED = 4404 CYCLES/MIC 0- 3 000000002513682 0000000001692C2 0000000000F3FE 0000000095A685 4- 7 00000000002092A 000000001D32119 -------START TIME: 2009/06/15 11:28:33 START TOD: C4574FEC19E58997 END TIME: 2009/06/15 12:19:09 END TOD: C4575B3B691D5311 COUNTER VALUES (HEXADECIMAL) FOR CPU OC (CPU SPEED = 4404 CYCLES/MIC) 4- 7 000000000020BEF 000000001AFF518 -----START TIME: 2009/06/15 11:28:33 START TOD: C4574FEC19E73D9 END TIME: 2009/06/15 12:19:09 END TOD: C4575B3B691E2E91 COUNTER VALUES (HEXADECIMAL) FOR CPU 0D (CPU SPEED = 4404 CYCLES/MIC) 0- 3 0000000021ADEE1 000000000169152 00000000000858 0000000644954

> These numbers come from a synthetic Benchmark and do not represent a production workload

How it works

Hardware Instrumentation Counters

What data is in the CPU MF – per Logical CP

- Basic Counters (and Problem) per CPU (1)
 - Cycles
 - Instructions
 - L1 Cache Sourcing basic information
- Crypto Counters per CPU (1)
 - Counts and Cycles by Crypto function
- Extended Counters per CPU (Model Dependent) (2)
 - Cache Hierarchy Information and more
 - z10 L1 Sourcing detailed information -
- 1 See "The Set-Program-Parameter and CPU-Measurement Facilities" SA23-2260-0 for full description
- 2 See "IBM The CPU-Measurement Facility Extended Counters Definition for z10" SA23-2261-0 for full description

See Appendix for Basic, Problem and Crypto Counters

z10 L1 Cache

Hierarchy

Sourcing

What we did

- Set up CPU MF on WSC z10 and z/OS 1.10
- Started/Modified HIS and collected SMF 113s and *.CNT Data
 - Ran "COUNTERS" mode, COUNTERS=ALL (Basic, Problem, Crypto, Extended) via:

- "F HIS,B,TT='EncrypCounters2',PATH='/his/',CTRONLY,CTR=ALL"

Ran DASD dumps

- DASD dumps sequentially over 20 minute duration
- With option: ENCRYPT(CLRTDES) -

Built sample reports with a REXX exec

- Used *.CNT output to as input
- Validated with SMF 113s
- Reports
 - Basic Counters
 - Basic / Extended Counters z10 L1 Cache Hierarchy Sourcing Report
 - Crypto Counters

- HIS019I EVENT COUNTERS INFORMATION
- FILE NAME: SYSHIS20090207.161102.CNT
- COMMAND: MODIFY HIS, B, TT='EncrypCounters2', PATH='/his/, CTRONLY, CTR=ALL
- COUNTER VERSION NUMBER 1: 1 COUNTER VERSION NUMBER 2: 1
- **COUNTER SET= BASIC** Description COUNTER IDENTIFIERS: 0: CYCLE COUNT 1: INSTRUCTION COUNT 2: L1 I-CACHE DIRECTORY-WRITE COUNT 3: L1 I-CACHE PENALTY CYCLE COUNT 4: L1 D-CACHE DIRECTORY-WRITE COUNT 5: L1 D-CACHE PENALTY CYCLE COUNT Start / End time START TIME: 2009/02/07 16:11:02 START TOD: C3B6ADBE7AD83D26 END TIME: 2009/02/07 16:31:19 END TOD: C3B6B24700FC45A5 Counters per CPU - 00 COUNTER VALUES (HEXADECIMAL) FOR CPU 00: 0- 3 0000004689BEBF20 0000000433831366 0000000014CF0790 000000021B57E0D8 4- 7 00000002A620C97 000000B25C43DBC ------START TIME: 2009/02/07 16:11:02 START TOD: C3B6ADBE7AD95826 END TIME: 2009/02/07 16:31:19 END TOD: C3B6B24700FD3625 Counters per CPU - 01 COUNTER VALUES (HEXADECIMAL) FOR CPU 01: 0- 3 00000048CFB22F1D 000000048D23D49A 0000000154D89E5 0000000229B662EA 4- 7 00000002C1F067B 000000B8087F6A7 ------START TIME: 2009/02/07 16:11:02 START TOD: C3B6ADBE7ADABCA6 END TIME: 2009/02/07 16:31:19 END TOD: C3B6B24700FE1525 Counters per CPU - 04 COUNTER VALUES (HEXADECIMAL) FOR CPU 04: 0- 3 00000021DE76A328 0000000A8F16E5E9 00000000022392 0000000008AC8F2 4- 7 00000001B92F07B 00000035E926CFD ------COUNTER SET= PROBLEM-STATE COUNTER IDENTIFIERS: 32: PROBLEM-STATE CYCLE COUNT 33: PROBLEM-STATE INSTRUCTION COUNT 34: PROBLEM-STATE L1 I-CACHE DIRECTORY-WRITE COUNT 35: PROBLEM-STATE L1 I-CACHE PENALTY CYCLE COUNT 36: PROBLEM-STATE L1 D-CACHE DIRECTORY-WRITE COUNT 37: PROBLEM-STATE L1 D-CACHE PENALTY CYCLE COUNT

Sample Report – Basic Counters

*** Z10 Summary - BASIC Counters Information *** *** TOTAL for all CPUs ***

Cycle Count625429033.94/secInstruction Count68153013.72/secL1 I-Cache Directory-Write Count580653.65/secL1 D-Cache Directory-Write Count15076029.05/secL1 D-Cache Directory-Write Count1572649.35/secL1 D-Cache Penalty Cycle Count91824855.27/sec

Total z10 Busy : 4.79% - for the 3 CPUs

Normalized Basic Counters to per Second L1 Index and Directory Write Counts used In Cache Hierarchy Sourcing

L1 Miss % can be derived from CPU MF information

•Instruction Count is the base. If instructions are not in z10 L1 Cache, then they must be "Sourced" from the z10 hierarchy. The Total "Sourced" is the Total Write Count, the "Misses"

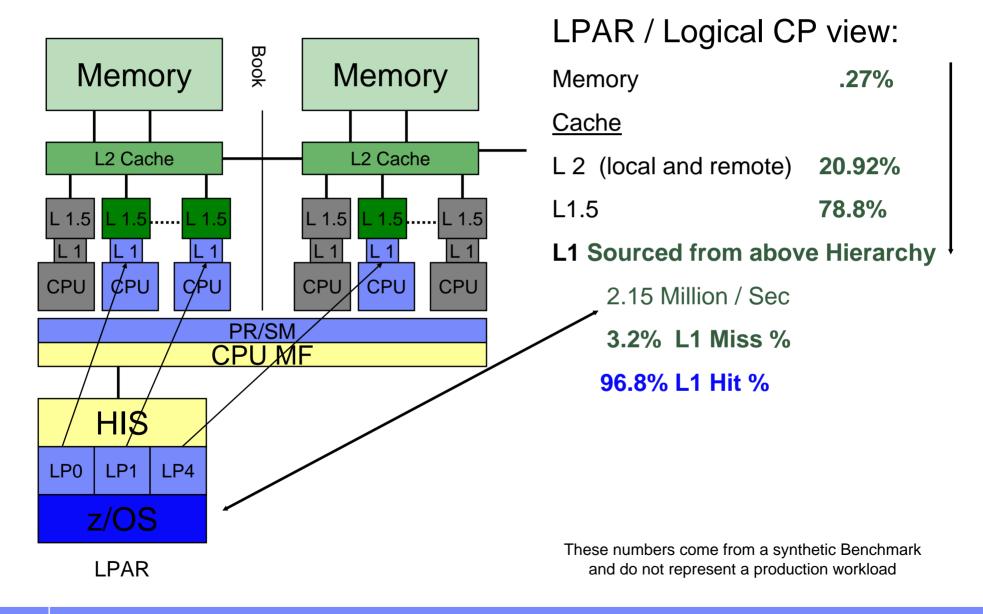
•L1 Miss % = Directory Write Counts (I+D) / Instruction Counts

 $\bullet 3.2\% = (580,653.65 + 1,572,649.35) / 68,15,013.72$

These numbers come from a synthetic Benchmark and do not represent a production workload

Advanced Technical Skills

Sample Report – Basic / Extended Counters z10 L1 Cache Hierarchy Sourcing


背背背	z10 Summ L1 Cache	Τ (DTAL fo	or all	CPUS					*** *** ***			
Sour	ce for L	.1									%	RATE	Unit
Dir Dir Dir Dir Dir Dir Dir	Write L1 Write L1 Write L1 Write L1 Write L1 Write L1 Write L1 Write L1	Data Inst Data Inst Data Inst Data	Cache Cache Cache Cache Cache Cache Cache	from from from from from from from	L1.5 L2 on L2 on L2 NOT L2 NOT Memory Memory	on on on on on	BOO same same same same	k Bool Bool Bool Bool	c c c	26.40 52.40 0.54 20.16 0.00 0.22 0.00 0.00	1% % % % % %	4703.85 4.05 63.44	/Sec /Sec /Sec /Sec /Sec /Sec
	Write L1 Write L1 al								Book		%	455.48 5392.17 2153303.00	/sec

Various Sources from Extended Counters

Total L1 Sourcing from Basic Counters ← C

> These numbers come from a synthetic Benchmark and do not represent a production workload

CPU MF and HIS provide a z/OS logical view of z10 Resource Usage and Cache Hierarchy Sourcing

Sample Report – Crypto Counters

PRNG PRNG PRNG PRNG PRNG PRNG PRNG PRNG	function cycle co blocked locked locked f locked f	TOTAL ount Function Cycle C Count unt Function Cycle Co Count Function Cycle Co Count	Count Count Count Count Count	our 1 c	nters PUs			0. 592. 6277.	0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec 0/Sec	
官官官		CRYPT	O BUSY	SUN	MAR	(食食食	
DEA AES	crypto	Busy: Busy: Busy:	0.00% 0.00% 2.55% 0.00% 2.55%	-	for for for	the the the	333	CPUS CPUS CPUS		

This information may be useful in determining:

•When and What encryption function is occurring (Count)?

•How many cycles are being used?

The encryption facility executed both SHA functions and TDES functions for this specific test.

Since CPU MF is new, this information is not available from RMF today

Need to analyze more Customer data

These numbers come from a synthetic Benchmark and do not represent a production workload

i

Image Profile Security Customization for HIS

TSYSHMC: Customize/Delete Activation Profiles - Mozilla Fi	refox
--	-------

https://9.82.36.91/hmc/wcl/T2867#W2860_treeSel

Customize Image P	rofiles: TSYS:TOSP2 : TOSP2 : Security	
- TSYS:TOSP2	Partition Security Options	
General Processor Security	 ☑ Global performance data control ☑ Input/output (I/O) configuration control ☑ Cross partition authority ☑ Logical partition isolation 	
Storage	Counter Facility Security Options	
Crypto	 Basic counter set authorization control Problem state counter set authorization control Crypto activity counter set authorization control Extended counter set authorization control Coprocessor group counter sets authorization control 	
	- Sampling Facility Security Options	
	Basic sampling authorization control	
Save Copy Profile Paste	Profile Assign Profile Cancel Help	
State and the second states		

Counter Data

Basic Counter Set

- Cycle count
- Instruction count
- Level-1 I-cache directory write count
- Level-1 I-cache penalty cycle count
- Level-1 D-cache directory write count
- Level-1 D-cache penalty cycle count

Problem State Counter Set

- Problem state cycle count
- Problem state instruction count
- Problem state level-1 I-cache directory write count
- Problem state level-1 I-cache penalty cycle count
- Problem state level-1 D-cache directory write count
- Problem state level-1 D-cache penalty cycle count

Extended Counter Set

- Number and meaning of counters are model dependant

Counter Data

Crypto Activity Counter Set (CPACF activity)

- PRNG function count
- PRNG cycle count
- PRNG blocked function count
- PRNG blocked cycle count
- SHA function count
- SHA cycle count
- SHA blocked function count
- SHA blocked cycle count
- DES function count
- DES cycle count
- DES blocked function count
- DES blocked cycle count
- AES function count
- AES cycle count
- AES blocked function count
- AES blocked cycle count

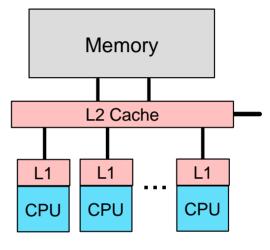
SMF Record type 113, subtype 2

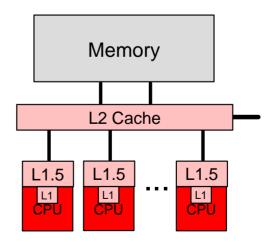
Layout: (SMF manual, HISYSMFR macro)

- Standard SMF record header ('1C'x bytes)
- SMF record control information
 - \succ TOD when SMF record is written, etc.
 - >Offset, length, and number of data sections
- Data section
 - >TOD when counter data was captured
 - CPU number
 - >Offset, length, and number of Counter Set Sections
 - Offset, length, and number of Counter Sections
 - Counter Set Sections
 - Counter Set type (1=BASIC, 2=PROB, 3=CRYPTO, 4=EXT)
 - Bit mask identifying the counters being recorded in array
 - ✓ e.g. 'FC0000000000000'x => counters 0-5 are valid
 - Counter Sections 8-byte counter values (contiguous)

z10 versus z9 hardware comparison

z9 EC


CPU


- 1.7 Ghz
- superscalar
- Caches
 - -L1 private 256k i, 256k d
 - L2 shared 40 mbs / book
 - book interconnect: ring

z10 EC

► CPU

- -4.4 Ghz
- redesigned pipeline
- superscalar
- Caches
 - -L1 private 64k i, 128k d
 - -L1.5 private 3 mbs
 - L2 shared 48 mbs / book
 - -book interconnect: star

Usage & Invocation - Additions to the .CNT file

The .CNT file adds a new line to describe the state (new version identifier)

```
    When a state change was detected and STATECHANGE=STOP
```

HIS019I EVENT COUNTERS INFORMATION VERSION 2

FILE NAME: SYSHISyyyymmdd.hhmmss.000.CNT

COMMAND: MODIFY HIS, xxxx

```
STATE CHANGE: YES, STOP
```

COUNTER VERSION NUMBER 1: XXXX COUNTER VERSION NUMBER 2: XXXX

When a state change was detected and STATECHANGE=IGNORE

HIS019I EVENT COUNTERS INFORMATION VERSION 2

FILE NAME: SYSHISyyyymmdd.hhmmss.000.CNT

COMMAND: MODIFY HIS, xxxx

STATE CHANGE: YES, IGNORE

COUNTER VERSION NUMBER 1: XXXX COUNTER VERSION NUMBER 2: XXXX

When a state change was detected and STATECHANGE=SAVE

HIS019I EVENT COUNTERS INFORMATION VERSION 2

FILE NAME: SYSHISyyyymmdd.hhmmss.000.CNT

COMMAND: MODIFY HIS, xxxx

```
STATE CHANGE: YES, SAVE
```

COUNTER VERSION NUMBER 1: xxxx COUNTER VERSION NUMBER 2: xxxx

When no state change was detected

HIS0191 EVENT COUNTERS INFORMATION VERSION 2

FILE NAME: SYSHISyyyymmdd.hhmmss.000.CNT

COMMAND: MODIFY HIS, xxxx

STATE CHANGE: NO

COUNTER VERSION NUMBER 1: XXXX COUNTER VERSION NUMBER 2: XXXX